FLUID MECHANICS AND HYDRAULIC MACHINE (RME3C002) MODULE-1

INTRODUCTION

Scope of fluid mechanics and its development as a science Physical property of fluid: Density, Specific gravity, Specific Weight, Specific volume, Surface tension and capillarity, viscosity, compressibility and bulk modulus, Fluid classification

FLUID STATICS

Pressure, Pascal's Law, Pressure variation for incompressible fluid, atmosphere pressure, absolute pressure, gauge pressure and vacuum pressure, manometer. Hydrostatic process on submerged surface on a horizontal submerged plane surface, force on a vertical submerged plane surface. Buoyancy and floatation, Archimedes principle, stability of immersed and floating bodies, determination of metacentric height.

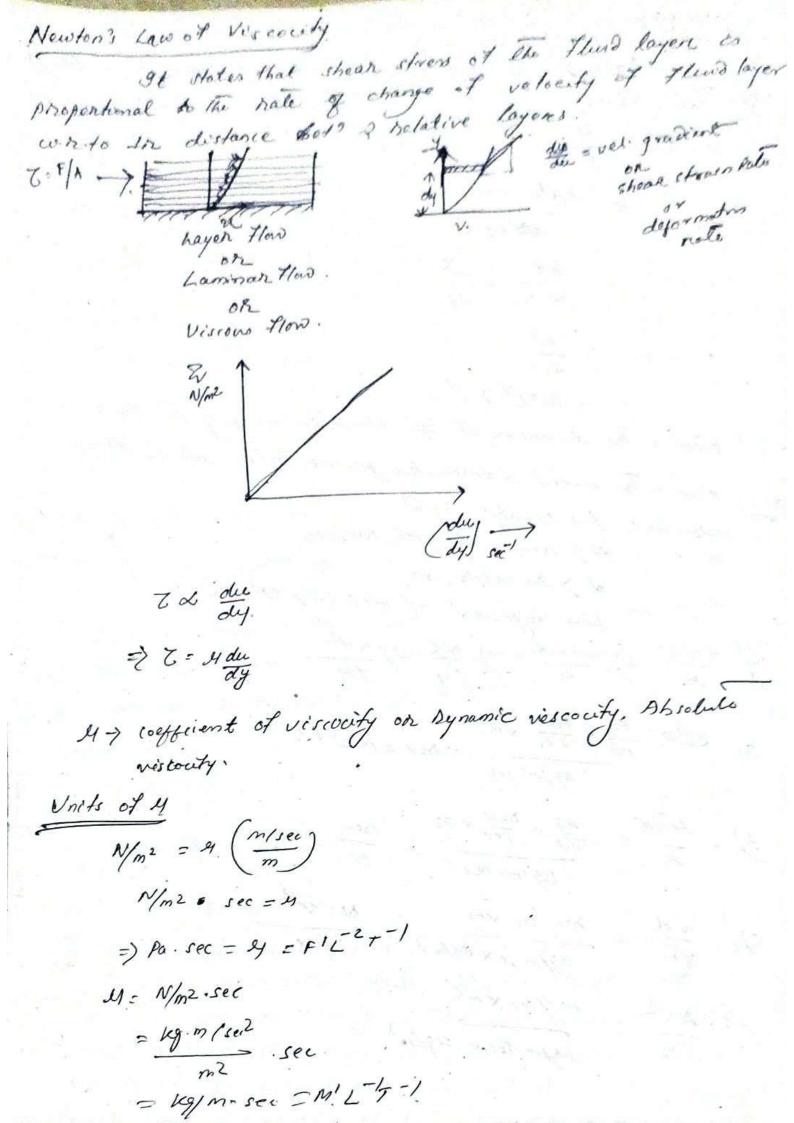
Fluid > > Things which can flow (liquid & gas) It tangential force applied a fluid, then fluid will continously detorming (Fluid) (solid) stress of rate of strain Stress & strain Concept of Continum / Continues Medium > >> mean free path L > Characteristic Dimension of the problem. -> Knudsen Number 1 1 0.01 (Continuum is valid) 0.01 < 2 < 0.1 (Slip flow) 0.1 < 1 < 10 (Transition Flow) 1 > 10 (Free molecular Flow) Physical Property of fluid: (1) Mass Density (4) > It is defined as mass per unit volume at a specified pressure & temperature in the fluid. 4°C > 1 alm > Jw > 1000 kg/m3 Que > satm > fw > 998 kg/m3. 20°C > 100 alm > Sw > 1.00 7 Kg/m3 20°C > 1 atm > Jain > 1-23 kg/m3 0°c > 100 KPa > fair > 1.27 kg/m3

1) Ilt of och est is TN, calculate The Following. i) value in m³, in cm³ & mm³. eii) Resity of the oil. hally a h ivy sp. wit of a oil v) of Gravity of the oil. vi) sp. volume of oil. Given: Volume = 1 let (et) - Exist a make t W = 7N. 1000 lt = 1m3 114 = to m3 if & = 12+ = 100.001 m3 = 0.001 1000m3 = 1000pcm3 = 106mm3 11) 7 = m ×9.8/ . W. W. 33 - 13 L + LOO . . . m=0.713kg. in) J= m = 0.713 = 713 leg/m) iv) w= fxg C. LA TOPER = 713x 9.81 0 N/m3 the to discipling the office = 7000 N/m3 were hope in a constant S = \frac{foil}{f_{40}} = \frac{713}{1000} = 0.713. I'm and the president vi) Vs = 2 713 m3/kg. 1 lt of Petrol , Sp. gravity is = 0.7, betermine volume is m3 & cm3, mass density of petrol in ug/m3 & gm/ml, we density of the petrol mass of the petrol, mit of the petrol, Sp. Voleene of the petrol Carlot State of the Street of the Contract

$$Sp. Ghave Yy Sp = 0.7$$
i) $Sp = \frac{g_p}{f_{new}}$
ii) $Sp = \frac{g_p}{f_{new}}$

$$\Rightarrow Sp = 0.7 \times 1000 = 700 \log 1000$$
iii) $\omega_{pool} = f_p \times g_p$

$$= 700 \times 9.81$$


$$= 6867 N/m^3$$
iv) $Sp = \frac{g_p}{g_p} = \frac{g_p$

Viscocity >

It is the property of the fluid due to which is How is resisted. This property is due to intermed attraction of the fluids due to their own molecules & adjoint contact other body molecules. It is similar coefficient of Trichm bets solid bodies.

vis of oil > vis of He U with a trade of a start to the

-) Viscocity is a day drong force which sporses that motion. All the real fluid enibot viscocity property.

(9) An incompressible fluid (4) or = 7.4 × 10-7 mg/see & sp gravity of odl is 0.88 Then what is the value of man density wt we density to dynamic & vircocity of the and not? y Soil = Soil Twaler 2) 0-81 = Jul 2) foil = PROUGHMS 2) Woil : failx]

-880×9.01 N/m3 = 8632 N/m2

D N = 1/2 > 74×107 = 800 =) A = 6.51 ×10-4 kg/m-sec.

(5) The shear stress developped in a leubricating oil of viscouty 18 0.0985 Pa-sec. Filler bet à paraller plates 1 cm aperts & moves with a relative velocity of 2 m/sec.

Z = es du Iy = 0.0985 x 2 m/se = 19.62 N/m2.

(An in compressible fluid V = 0.74 Mm2/see, Sp. Gravery 0.88 is held bet? 2 parallel plates . It the tough plate so moved with a velocity 0.5 m/see. while the bottom plate is held stationary, the fluid reaches a linear relowty in the gap of 0.5 mm bett the plates then Shear stres in Parel's at the sury are of a plate

Compressibility of fluid >

To compress the gases a small amount of force is sufficient because of loose force of attraction between gas molecules where as in case of liquid large amount of force required to compress liquid molecule.

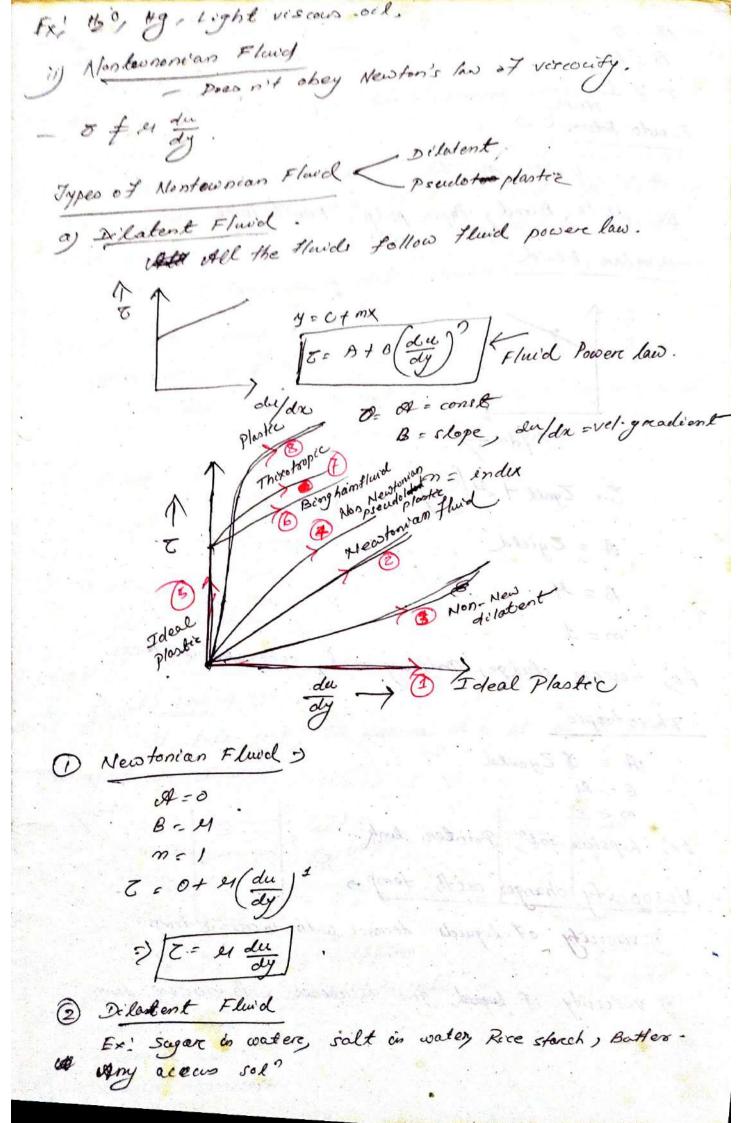
Tompressibility is The raciprocal of Bulk modulus of

Bulk modulus of Elasticity (k) = Increase is vol strain

$$K = \frac{+ \Delta P}{+ \left(\frac{\Delta V}{V}\right)} = \frac{+ \Delta P}{+ \left(\frac{\Delta f}{f}\right)}$$

Pressure change of 200 N/cm², Then the change in volume

 P_{DN1} : $K = \frac{\Delta P}{\frac{\Delta V}{V}}$ $= \sum_{i=1}^{N} \frac{\Delta V}{V} = 1 = 100\%$


Swiface Tension > Property of the fluid (mostly liquid) exibits a tensile force at the free surface of the liquid > This property is due to intermolecular forces of the own fluid molecules and two different liquid molecules. Force Tension = $\frac{Force}{Unit Langth} (N/m)$ $= \frac{Fnercy}{Unit Area} (\frac{N \cdot m}{m^2}) = \frac{T/m^2}{Unit Area}$ Relation between Surface Tension & Pressure (P) -Case-I > higher droplet. $P = \frac{F}{\pi/4d^2} = ... 0$ $T = \frac{F}{L} = \frac{F}{\pi d} ... (2)$ From 1 & @ PX 11/4 d2 = TX TI d $\Rightarrow P = \frac{40}{9}$ Case - @ Soap Bubble P = F - 0 T = F (2) (As inside & outside surface of bubble exibit surface Tension) From () 40, P= 80

Coppillarcity -) Cappilarity is the phenomenon of liquid due to which liquides rises en natural tubes. Ex; There of Plant getting 40 through the differe bronches of a tree. - becameter of pipe < 12 mm copillarity Rise due & rose of the pipe TXLCORD Wama = JAh9

Expression for capillarity in a narrow pipe -Let d= Inside diameter of nannow pipe (m) 9 - Density of Pluid (kg/m3) Us surface Tension of fluid (N/m) & = Angle of contact with vertical surgare Self wt of fluid = sceretace Tension of fluid 7 TAK9 = TLAME OUTE =) JXT/4 d2xhxg = 0xTdx and cod => h = 40 rosd. where V = Sp. weight or weight density h = 46 cosd => /h = 40 / if a < 20°

of wiccocity

4 51 di 5	
Types of Fluids -	
) odeal Fluid	
- child	
2) Real Fluid	
Florid,	
3) Newtonian Fluid	
4) Non Lew notan Fluid.	
4) Non Lew riodas	
- clust	
1) Plastic Flow Flow.	
6) Plastic Flow Pluid. 6) Thexofrapic of theod.	
- 1 Thix of sopre & This	
6)	
1) Ideal Fluid	
- encompressible	2
1 /sla shout Sto	resses on forces.)
- zero viscocity (No shear st.	manufan pro cesi .
at or imagenery fluid for	Conference of the Conference o
- No Flud in ansverse posse	as Ideal Fluid properties.
- No this a driverse	
DI Fluid ?	1.1.1.7.4
2) Keel The law wise	ocity property & subjected to
- one where has vest	ocity property & subjected to
shear shear s	tresse
5 mall ament	1. Marian
- Viscouty property	
70,071,0	
Types of Real Fluid.	1 which obers Meston's law of
: Newtoman Fluid of land	I which obeys Meston's low of
	last of stone it - Pale)
visweity (Sheen Strops pro)	bentunal sheere stronin Rale).

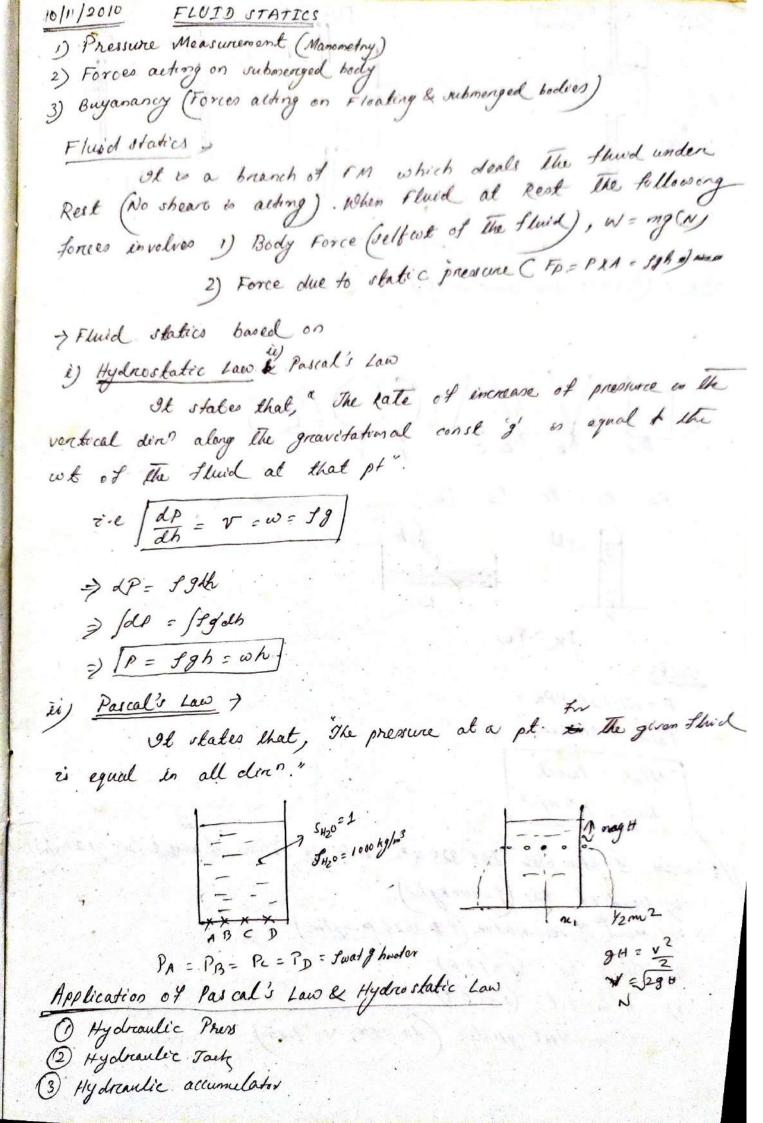
C4 = 0 B=H Pseudo Etnich) D=0, B-4, M<1 Ex; Molk, Blood, Paper pulp, Fruit juice. Bringham Fluid dy/dn >

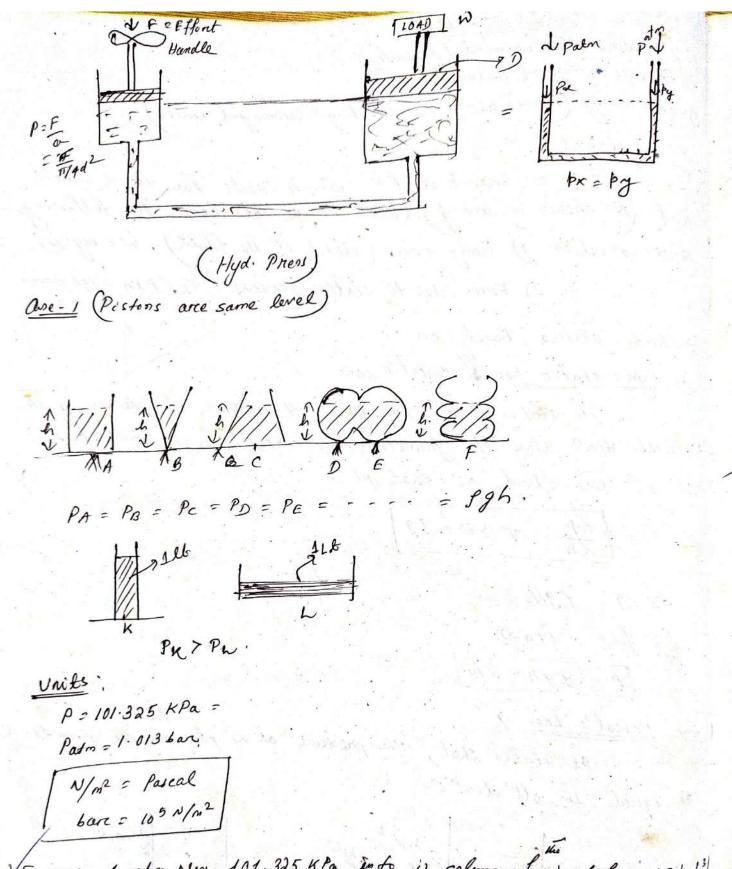
E = Zyeveld + 24 (du din)

A = Eyield

Ex' Sewage sludge, Drilling mud, concrete mixture

Thixo topic


A = \$ Zyevild


fx' Lystees sol' Printer link.

Viscocity changes with temps

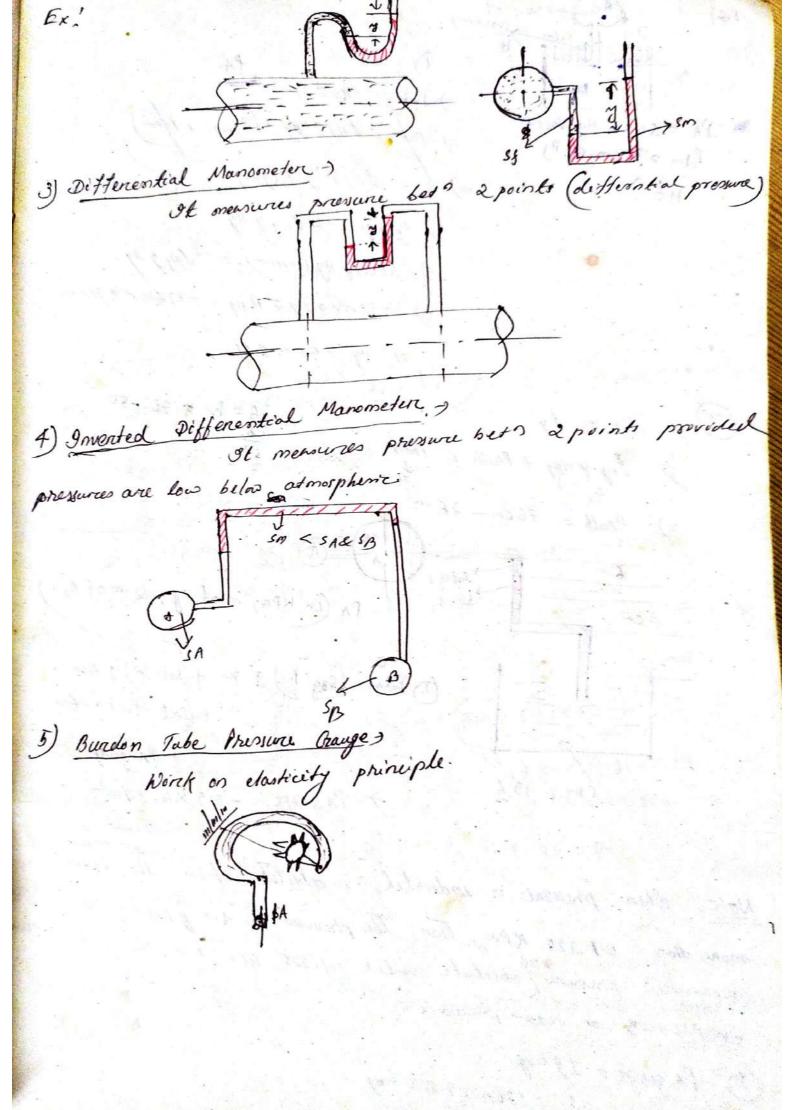
i) viscocity of liquids decrese with a crease temp

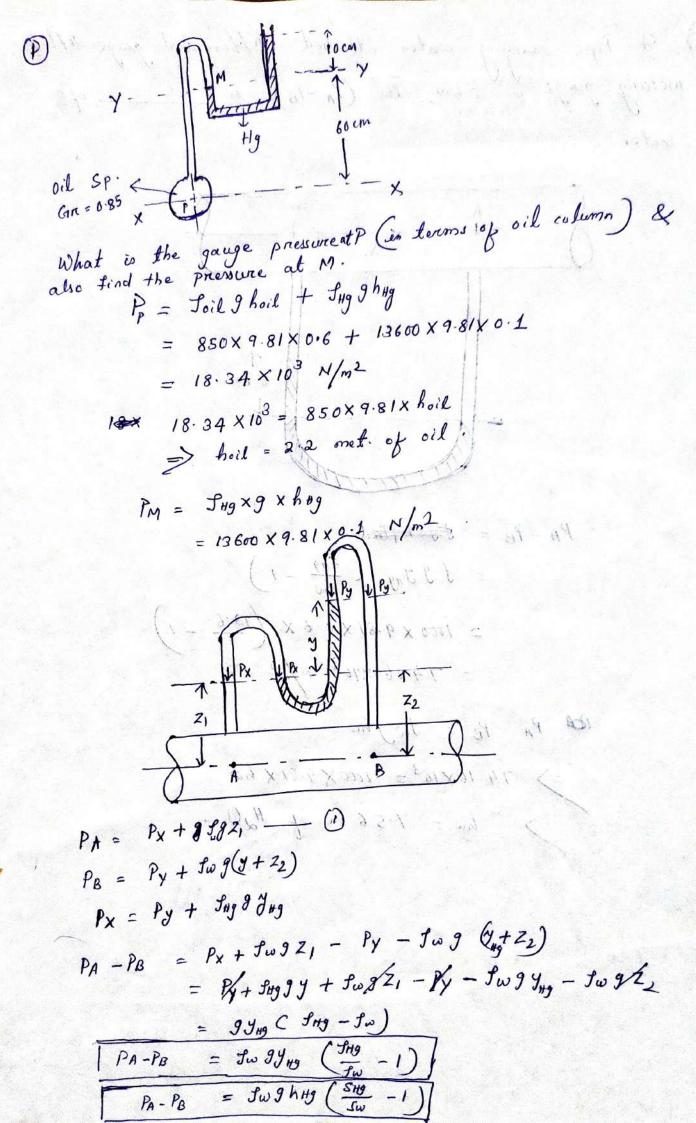
is viscouty of lynd gas is creases with increase temp

i) Head of 150 (f = 1000 kg/m³)

ii) Head of rea water (fr 1025 m kg/m²)

iv) Hed q Hg (8=13.6) v) 11 11 oil (8=0.8)

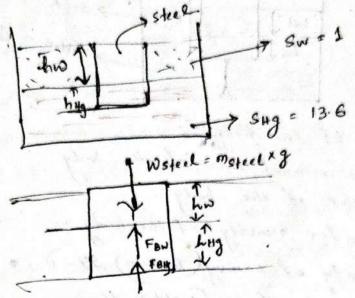

vij n " steel cylinder (dra : 1m, s= 7.85)


i) Ighair P -> h= 19 = 101.325 X163 = 8605 onts of air. = 8.6 kms of our ii) fgho= P => hw = p = 101.325 × 103 2 10.3 ml of 20. ii) fghs.w = P. =) hsw= P $= \frac{101.325 \times 10^{3}}{1025 \times 9.81}$ 2 10.08 mts of seawater. IV) Suggling hug = P =) SHg x SH20 x g x h Hg = P =) hyg = 101.325 x 103 13.6 x 1000 x 9.8/ 2 0.76 m mining housing & = 76 cm of Hy Co fly from (s my my = 760 mm of 49. V) Soil x Soil x gx hoil 2 P =) hock = 101.325×103 0.8×100×9-81 = 12.9 mbs of evoil P = Isteel x 9xh stell 101.315×103 = 7.85×1000× 9.81×h steel :. hsteel = 1.31 mts of steel

(D)

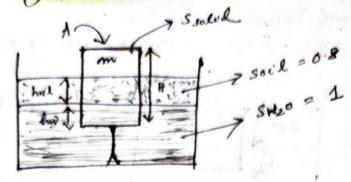
1 Determine the Effort Required to left the stomes lands by using Hydraube press. The oil of quite griovity = 0.5% The position of Plunger 20 cm above the pirten. The Rates of Pertanto plunger dia is 10 W= 2 tonnes = 2x1000x9.8 = 196 20 (N) Juil : 825 kg/m3 hoil = heeft = 0.2 m. According to principle of Manometry. => = + fact & hoil = W =) $\frac{f}{a}$ + 825 x 9.81 x 0.2 = 19620 =) \frac{f}{2/4} d^2 + 825 x 9.81 x 0.2 = 18620 182 = 10 2) D= 102d Securit ! from white other wice at w ampossible

Pressure Measuring Device Sample Memorseters. 2) U- Tube Manameter. 3) Differential V: Tube Manometer 4) Bouredon pressure gauge. I Pressure is a measured quantity which can be sensed by thurds changing one form of energy isto another form of energy. Hence it is a Transducer. > # Following are devices. De Barremetere > et measures almospheric presure. 7 To recelli Tube 1 h = 76 and by Sudden fall in Barcometer indicates, that preesure at the given location is falling down which causes eyclone h = 400 cost (20 for 120) => 1mm = 4 x (73 x 5 x 10 -3) => dw = 0.03 m = 36 mm, Simple Manameter o It is a vertical tube which is connected a to a point where presure is to be measured. Px = fmghm V Tube Manameter > U. tube man meter used for measurery longe pressure at a point provided one end of the tube is open other end is connected to a point where pressure is to be necessarily


(P) A Pipe carrying water attached differential gauge deflections mecany gauge in 0.600, The (PA-PB) is ____ in of 0.6m PA-PB = 8 1 1 1 1 1 X 13 1 X 0301 = fgy ng (3/19 -1) = 1000 × 9.81 × 0.6 × (13.6. -1) = 74-16 ×103 N/02 N/02 PA -PB = Swghw => 74.16×103 = 1000×9.81× hà => hw = 7.56 m of #20 1x + 10261 - 14 - 103 (42) 14 - 1097 + Swatt - 14 - 1209 1/11 - Sw 272

Buyancy -
> Buyancy is the physical phenomenon due to which bodies Healing on submenced in the fluids
on submenged in the fluids
Durant is factal as a force always acts ventically agained
the gravity.
the gravity. The Magnitude of Buyancy force equal to the weight of the fluid displaced by the body. N = Mg
fluid displaced by the body.
W= Mg
W=Mg
· G
h 1 B B
$DG = H/2 \qquad GB = B/2$
B = Centre of Buyaney G = Centre of Gravity B = Centre of Buyaney G = Centre of Gravity
F = Buyancy funce (1) due to fluid (up thrust force)
B = weight of fluid displaced.
FB = Buyancy funce (1) due to third (apriored) = weight of fluid displaced: = miller × 9 = I fluid × I fluid × 9
to y BXIX hX g
= Island x BXL x h x g
FB = Stud X (Ac/s) × h. x g
$F_{B} = J_{A}lwid \times (498)^{A}$ $\geq F_{Y} = 0 \text{(in)}$ $\Rightarrow w_{bdy} = F_{B} = 0$ $\Rightarrow w_{bdy} = F_{B} = 0$
> W- FB = 0
No. 10 = 18
5) mbody 1)
=> Stanty Vbody 9 = FB (1) X9 = Islaid X A c/8 X 9
S fix(Acis× T)
No. of the state o
=) Shody XH = B = Shody XH = B

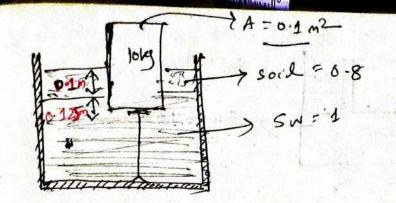
D & Stone size 0.4m in cube form floats in water. The gravity of the porous stone is 0.6. Determine the following. i) Mass of the stone ii) volume of the stone iii) Density of the stone iv) Depth of immention of the rube in 120 v) Volume of H20 displaced by the floating cube vi) Weight of H20 displaced vii) Buyancy Force viii) Gauge Pressure at the hottom . i) $S = \frac{J \text{ solid}}{J \text{ solid}} \Rightarrow 0.6 = \frac{J \text{ solid}}{1000} \Rightarrow J \text{ solid} = 600 \text{ kg/m}^3$ $f = \frac{m}{v} \Rightarrow m = f_{x}v = 600 \times 64 \times 10^{-3} = 38.4 lg$ ii) volume of the cube = 0.4×0.4×0.4 = 64×10-3 m3. iv) h = Soolved x H = 5 $=\frac{0.6}{1000} \times 0.4 = 0.24$. V) volume of 420 displaced = (\(\forall \) = BXLX &= 0.4x0.24 = 0.0384 m3. Bujaney Touce (1) due so The Weight of water displaced = mwater X 9


= 1000 × 0.038 4 × 9.81 vii) Buyoney Force (f) = Weight of Fluid displaced. viii) Gauge Pressure at the bottom (Pauge Lottom) = Swater x g x h = 1000× 9-81 × 0-24 = 2.35 × 103 N/m2 Exilary Prings of

Of A solid body C steel), 3=7.85, 0.50x 2mx 1m (BX LX H) is kept in 2 fluid vessels shown in the fig. First fluid is the 2nd Fluid is 40. What is depth of immersion of steel in 498.450

Wsteel = FB mg + FB W

Connected on Floating Submerged Bodies



on = mass of the body Acys = cross rectanal who of the body. H = Height of the body. 5 = Spenfire gravity of the budy. Sw = Density of Leavy (b. Hom) Flud Soil = Density of top (light) stud. hod = " " Top fluid in m 7 = Tension in the strong.

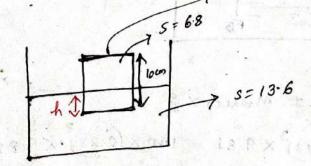
W+T = FBW + FB och => mg+T = mwg + moil g = Sw Vg + foil Voil xg (System is Equilibrium) => mg+T = Sw. Ays hwg + Soil XAXhull

a string in a versel containing 2 different lequids shown in 98 The fig. Density of bottom fluid (150) = 1000 kg/m3, Granity of the top fluid (och) = 0.8, & SH20 = 1 - Determine

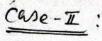
i) Grange pressure at the bottom of the cylinder. (2.011 KM) 11) Tension In the string (N) 103 N.

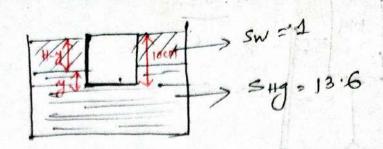
a) PROTTOM = Swghw + Joil x g x hoil = 1000 x 9.81 x 0.125 + 800 x 9.81 x 0.1 = 2.011 x 103 N/m2.

b) mg +T = Sw Ags hwg + Soilx Agsx hock xg


= 1000 ×9.8 + 1 = 1000 ×0.1 ×0.125 × 9.81 ×

+ 800 ×0.1 ×0.1 × 9.81

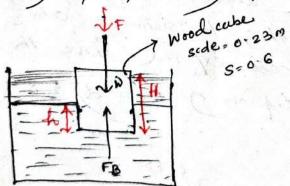

s + = 103 N


all A Methalic cube of each side 10 cm, $f = 6.89 \, \text{m/cc}$ in floating in liquid Hg ($f = 13.69 \, \text{m/cc}$) with 5 cm hight of the cube exposed above the Hg level. HzO C Densuky = 19 m/cm) Is filled over this, to submerge cube telly. The New 1580 is filled over this, to submerge cube the Hg level is not height of the cebe exposed above the Hg level is height of the cebe exposed above the Hg level is 15.4 cm of 5 cm d) 5.8 cm.

Case-I

h = Ssold x H 5 L 7 = C. 8 x 10 = 13.6 x 10 = 1/2 x 10 = 105 5 cm

= #-9 + ~ S solen X H = SAg X hag + Sw (H-7) 6. 6.8×10 = 13.6×9 + 1 (10-4)

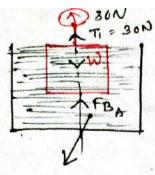

-) (8 = 13.64 + 10-7

J 58 = 12.67

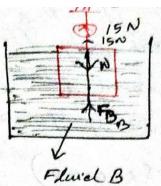
3 y= 4.6 cm

H-y= 10-4.6 = 5.4 cm.

Of A cube of wood has (s=0.6) has 230 mm each side when is floating in 120. Estimate the Magnitude & den' of force IF Required to hold the wood completely submered in The 40. of 47.74Nb) 64.64N c) 87.13Nd) 96.72N

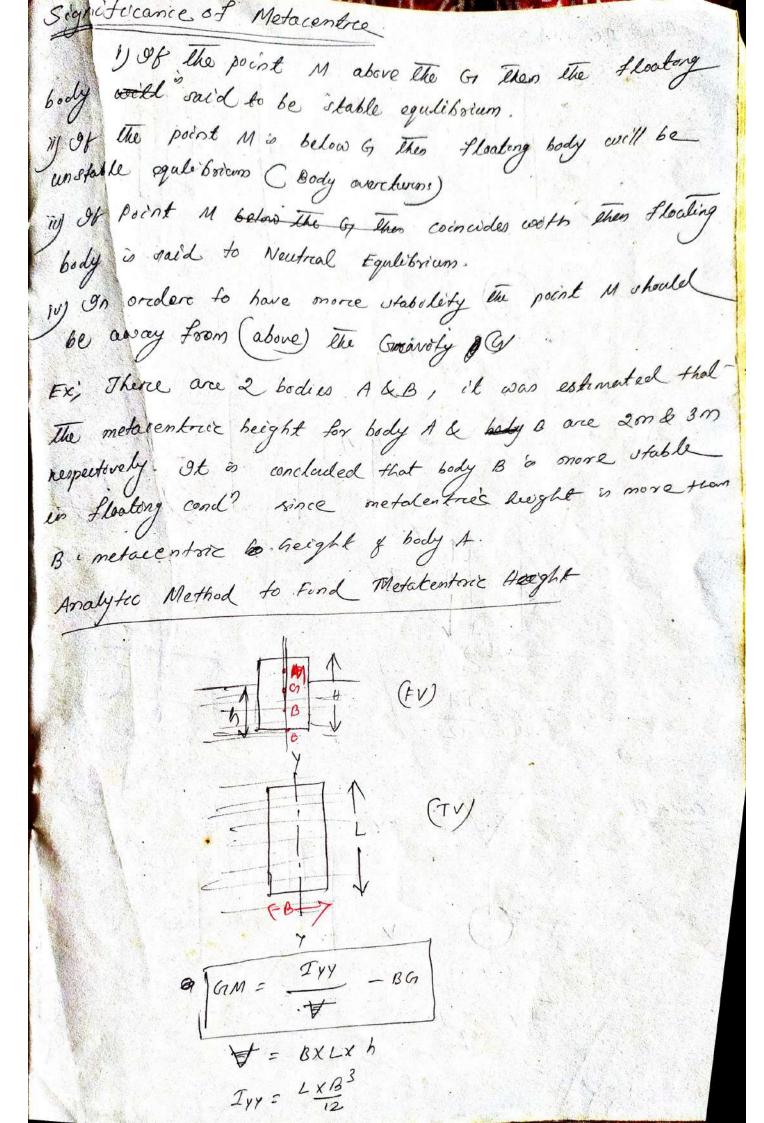

F+W = FB

=> F+ Mbody xg = Mwater xg


Fully submiged > F + 600 x (0.23) × 9.81 = 100 x (0.23) × 9.81

> F = 47.74

Oll A body weighting 30N & 15N when weighted under Submerged in 2 different legards of RDs 0.8 & 1.2 Respectively. What is the volume of the body


Fluid A S=0.8

Fluid B SB = 1.2

Frem O& @

Note: Fore Floating body depends upon greavety of the fluid where the body float. Example! Boat moved from river waters to sea water boat rivers due to moved up uptrust developped by sea 420 An object weighing took in air us (Sea 420 > S River 40) from he se son when fully submire in the relatione during & In 5) & SOLID = WARR - WHO organia Terror of 125 and 125 7) h = 3.4 xH h= +x+ Metacentre & Metacentric Height of Floating Body h = 0.25 H > Where a Floating body is distribed then the body tilts due to which centre of Buyancy (B) change METACENTRE Metacentree is the point about which is hody ossicalates when it is kilted by small angle. The metacentre point is obtained by intersecting Normal was of the body and The action of Buyaney Force. Metaeentruc height (GM) I It is the distance measured from centre of growity of the soledbody to Metacentre point (

$$GG = 00 - 08$$

$$= \frac{11/2}{2} - \frac{1}{4/2}$$

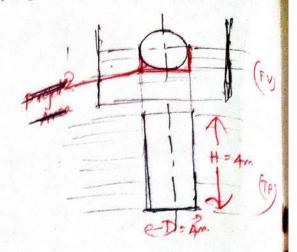
$$CONDECT = \frac{11/2}{2}$$

$$Tyy = \frac{11/2}{2}$$

I soled cylinder of diameter Am & height Am kept in dater The specific growery of the alid is 0.6 & ils fleating in 450 with its axis is venteral. 1) Horizonlal, State the cond' of the solid equilibrium (steble or antalle) H= 4m, 0 = 4m h = Social XH = 0.6 × 4 = 2.4 m. GM = _____ - BG where $I = \frac{\pi}{64} D^{\dagger}$ = # (4)t = 4TM4 = Acls X h = # D2 X 2.4 = T x (4) 2 x 24 = 9.6 TT m3 BG= 4/2 - 1/2 = 4/2 - 2.4 = 0.8

 $GM = \frac{4\pi}{9.6\pi} - 0.8 = -3.83 \text{ m}$

CONCLUSION: -ve sign inducated Metacentre below con.


Hence The cylinder on ventral oxor a anstable

Case - II;

$$T = \frac{HD^{3}}{12}$$

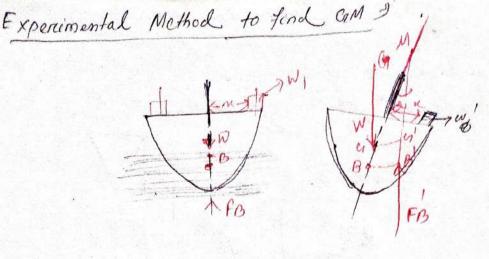
$$= \frac{4 \times 4^{3}}{12}$$

$$= 21 \cdot 33 \text{ mm}^{2}$$

If sold cone floats is 40 with its apex downwards. The beight is 50. Determine (1) Depth of immension, condition of the stability of the cone (volume of cone = 1 TR2#)

i)
$$h = \frac{s cone}{s woter} \times H = \frac{o \cdot 8}{l} \times 5 = 4 m$$

Resulting the property of the second similar than the property of the second second


$$BG = 0G - 0B$$

$$= \frac{3}{4}H - h/2$$

$$= \frac{3}{4} \times 5 - \frac{4}{2}$$

$$GM = \frac{T}{|Y|} - BG$$

$$= \frac{4\pi}{3.413\pi} - 1.75$$

Land =
$$\frac{GG'}{GM}$$

 $GG' = GM + and$
Momement about M
 $WX GG' = W'XX$
 $WX GM + and = W'XX$
 $= \frac{W'M}{W \cos fand}$

Cachulation of Natural Frequency of the fleating Body.

The floating body is in SHM, for which

Where $G_1M = Meta$ centric height(r) K = Radious gyrectim (m) $I = AK^2$ $K = \int_{-1}^{I} \frac{I}{A}$

Ill Estimate the natural frequency of the floating ship with metacentraic height to com & least Radious of gyration is 800 & also state time period of for the

ase a oscillation. 4n = 1 \frac{1}{27 \sqrt{9.81 \times 0.7}} 0.05 HZ -- time period = 1 = 19.2 see. Hydrostatic Force on submerged boddes Fore design of dams, design of hydraulic gates, sahmaring jet pumps etc the hydrostatic force is to be est estimated. - Hydrostatic force is the normal force due to & Normal praisare (compressive stress) acting on the plane surface. Ex; Jank or filled with 40 shown in the fy. ABCD = Floor Area, - INO I CDEF = ABGH iii) BCFG = ADGE NO what is the presione on ABCD Plane JABOD = 18H (h=H) = 1000 X \$ X 6 = 60 KN/m2 CAD FABOD = 60X ABOUT PABOD X ABOUT Force on the floor = 60x (2x4) due to pressure) = 430 KM

(3) & Force due to self wt. of water on Floor ABCD - Wwater = mwx 9 = fwx lwx9 = fwx (Ac/sx H) g = 1000 x (2x4) x 6 x 60 N = 480 KN. Presure Force on Large ventral surface = Fp Large ventical s. (fg H) × A vertical surface - 60× 24 m2 = 1440 KN (3) Pressure for on smallers vertical surjaces = 60 kN x 2 X6 = 720 KN Note: From the above example it is observed that the fires acting different montal surfaces varies even presum at a point is some. The flow restriction creates previous The product of the pressure & Normal area is called pressure force or Total pressure. Hydrostic forces nothing but Pressure forces under static fluid action. No shear acting on their acts on the parchicles. When the fluid at Rest following forces envolved 1) Self wit of The Fluid panticle. 2) Normal force due to Normal pressure on En perti Sarface (Horozontal, vertical & inclined) Terms Used 1 Total Preside-(2) Centra of Pressure. 3) Horazontal Force compensant. 7) Vertical force compoent 1 Kerultant force on hydrostatic films

Ot to It force developped due to hydrostatic
presseurce en the plune surjaces which are in contact with The magnifuede of Total presievel is equal to p pressure X Normal Area e e FEPXAN where P = Hydrostateo fluid pressure = 19h where To = distance from the surface of the liquid to The centroid of the submerged plane surface. 5 1 In S Ex-O FP= J. 9 2/2 To = x+H/2 The Tark of the second of the h= x+2/3 H h = x + 4/3

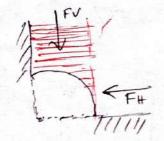
Denthe of Pressure of Fon the subscripted Plane surfaces as any

position is defined as The Ph where total pressure

(Pressure force) concontrated on acts.

(B* = Centre of Pressure = Total

ATT

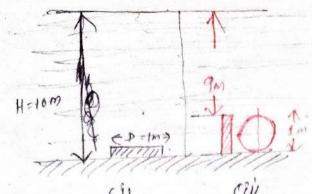

ATT

3 FH is a verton quantity force due to scalar quentity
pressure acting on Normal Surjan

- For the horazontal Surjan it is equal to the pressure
due to depth of & The fluid × Normal Area.

FH = GOK J-XA

De Vertical force for submerged bodies valid for curved force = Se singues only the magnitude of vertical force = offered by correct surface with of the fluid married by correct surface



a Pluid of Gravity 0.85. What is the as pressure of the a fluid of Gravity 0.85. What is the as pressure of the circular lamina is horizontal position at depth lum.

Circular lamina is horizontal position at depth lum.

B) What is the total pressure acting on the circular hume.

B) Of Circular lamina is placed in vertical position then what is the pressure acting on it be total pressure acting on it.

Circular lamina in horizonal plane

Circular lamina in ventical plane

a)
$$f = fg\pi = 850 \times 10 \times 10$$

= 85000 N/m²

b) Fp = Total Pressure = Pressure due to pressure, PXAN

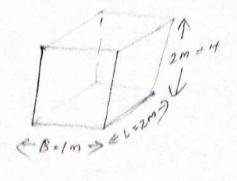
85000X # (1)2

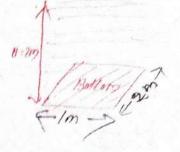
= 66.75 KN

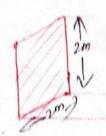
9 P= 19 F = 850×10 × [x + 4]

2 850 × 10 × [9 + /2]

= 850X10X 9.5


Z 80.75 KN/M2


d) Fp = POXA = 80-75 x = (12

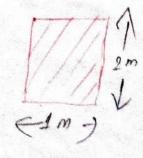

= 63.42 KN.

a A Reetangular 150 Tank felled with 150 completely with LXBXH (2mx 1mx2m). The Ratio of hydrostatic forces at
The boston to that any larger ventral surface is a

a) 1/2 / 1 0) 2 d) 4

FP = AXA = JJh X A = 1000 X 400 X 2 X (1X2) = 40 KN.

Large vertical surface


$$F = fg\overline{h} A$$

$$= 1000 \times g \times \left(\frac{2}{2}\right) \times 2 \times 2$$

3 In the above problem Find Total presure at the bottom

Formaller ventral regare = ?

FboHom = 40KN

For Pgh A

= 1000 X 10 X (#) (BXH)

= 1000 X 10 X 1 X 1X2

= 20 KN

A = Total Area of unlined Surface.

To: Depth of Ch of inclined area from free surjuce

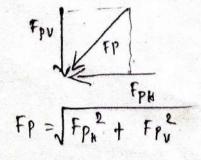
ht = Distance of centre of pressure from free surface q liquid

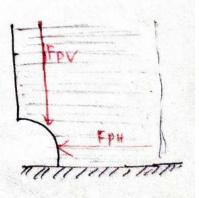
a - Angle Made by the plane of the surface with free liquid

$$\begin{bmatrix}
 F = fg \overline{R} \\
 \hline
 I = \chi + \frac{H}{2} \sin \Omega
 \end{bmatrix}
 \begin{bmatrix}
 \dot{A} = \chi + \frac{H}{2} \sin \Omega \\
 \overline{A} = \chi + \frac{H}{2} \sin \Omega \\
 \overline{A} = \chi + \frac{H}{2} \sin \Omega
 \end{bmatrix}$$

Conved Sunface >

For the submerged curved surface, the hydrostatic force analysis envolves two components.


1 Horizontal Component (FPH)


(1) Ventical Component (Frv)

- Horizontal component is similar to ventical plane surface analysis.

-> For calculating vertical force component the total weight of

the fluid supported by covered surface

$$24$$
) $x = 0$ $q = 60^{\circ}$ $B = 0.75 m$ $S = 0.85$

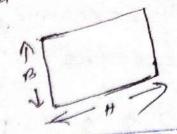
$$\overline{h} = \frac{4}{2} \operatorname{sin} \delta$$

$$= \frac{2.4}{2} \operatorname{sin} \delta \delta$$

$$h^* = \frac{IGsin^2Q}{Ah^2} + h^2$$

$$I_{4} = \frac{B \times H^{3}}{12}$$

$$= 1.75 \times (2.4)^{3}$$


$$= 12$$

$$h^{*} = 0.864 \times \sin^{2} 60$$

$$0.75 \times 2.4 \times 1.039$$

$$4 + 1.039$$

= 1.385 m.

A Rectangular plates 0-25myr-4m is immersed in a liquid of relative density 0-85 with of relative density 0-85 with over 0-75 m side horizontal areliquid and just at the eignid murpure. If the plane of the plate makes an angle of the plate makes an angle of the pressure force in central pressure force in central centre of pressure in man

0-4096